Outgassing, Temperature Gradients and the Radiometer Effect in LISA: A Torsion Pendulum Investigation
نویسندگان
چکیده
Thermal modeling of the LISA gravitational reference sensor (GRS) includes such effects as outgassing from the proof mass and its housing and the radiometer effect. Experimental data in conditions emulating the LISA GRS are required to confidently predict the GRS performance. Outgassing and the radiometer effect are similar in characteristics and are difficult to decouple experimentally. The design of our torsion balance allows us to investigate differential radiation pressure, the radiometer effect, and outgassing on closely separated conducting surfaces with high sensitivity. A thermally controlled split copper plate is brought near a freely hanging plate-torsion pendulum. We have varied the temperature on each half of the copper plate and have measured the resulting forces on the pendulum. We have determined that to first order the current GRS model for the radiometer effect, outgassing, and radiation pressure are mostly consistent with our torsion balance measurements and therefore these thermal effects do not appear to be a large hindrance to the LISA noise budget. However, there remain discrepancies between the predicted dependence of these effects on the temperature of our apparatus.
منابع مشابه
- qc / 0 41 21 03 v 1 2 1 D ec 2 00 4 Characterization of disturbance sources for LISA : torsion pendulum results
A torsion pendulum allows ground-based investigation of the purity of free-fall for the LISA test masses inside their capacitive position sensor. This paper presents recent improvements in our torsion pendulum facility that have both increased the pendulum sensitivity and allowed detailed characterization of several important sources of acceleration noise for the LISA test masses. We discuss he...
متن کاملTorsion pendulum facility for direct force measurements of LISA GRS related disturbances
A four mass torsion pendulum facility for testing of the LISA GRS is under development in Trento. With a LISA-like test mass suspended off-axis with respect to the pendulum fiber, the facility allows for a direct measurement of surface force disturbances arising in the GRS. We present here results with a prototype pendulum integrated with very large-gap sensors, which allows an estimate of the ...
متن کاملar X iv : g r - qc / 0 41 20 93 v 1 1 9 D ec 2 00 4 Measuring the LISA test mass magnetic proprieties with a torsion pendulum
Achieving the low frequency LISA sensitivity requires that the test masses acting as the interferometer end mirrors are free-falling with an unprecedented small degree of deviation. Magnetic disturbances, originating in the interaction of the test mass with the environmental magnetic field, can significantly deteriorate the LISA performance and can be parameterized through the test mass remnant...
متن کاملqc / 0 41 20 93 v 2 2 M ay 2 00 5 Measuring the LISA test mass magnetic proprieties with a torsion pendulum
Achieving the low frequency LISA sensitivity requires that the test masses acting as the interferometer end mirrors are free-falling with an unprecedented small degree of deviation. Magnetic disturbances, originating in the interaction of the test mass with the environmental magnetic field, can significantly deteriorate the LISA performance and can be parameterized through the test mass remnant...
متن کاملProspects for terrestrial equivalence principle tests with a cryogenic torsion pendulum
A torsion pendulum may be used to measure effective differential accelerations of test masses in the field of sources on distance scales below those accessible in a space experiment such as STEP. Operation of a torsion pendulum at low temperature (2 K) offers many benefits, notably: low thermal noise, high fibre stability, highly effective superconducting magnetic shielding and excellent temper...
متن کامل